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mass spectrometric elucidation and subsequent development
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Abstract—The synthesis of a modified pentapeptide involving the palmitoylation of the hydroxyl group of a serine residue present at
the N-terminal position is presented. An O-N-acyl shift was observed by LC/MS/MS, the two isobaric molecules exhibiting upon
collisional activation dissociation (CAD) different fragmentation behaviours. The synthetic pathway was thereafter modified to
control the palmitoylation site (O or N). The method was validated with another serine acylation (octanoylation). The evidenced
mass spectrometric criteria could serve to decipher peptide post-translational modifications in proteomics.

© 2003 Elsevier Ltd. All rights reserved.

Among post-translational modifications in peptides,
acylation of hydroxylated amino acid residues, particu-
larly serine residues, is an important phenomenon. As
an example, the peptide hormone ghrelin is octanoylated
on a serine residue and this modification is crucial for
the biological activity.' In order to study in more detail
modifications affecting the serine residue in peptides, we
synthesized on solid support a series of pentapeptides
having a serine at the N-terminus. This serine was then
acylated on the resin and the compounds were analysed
by mass spectrometry.

The first strategy used to synthesize the O-Palm penta-
peptide is described below (Scheme 1, path a). The
pentapeptide 1 was prepared according to standard
Fmoc SPPS on a Rink amide polystyrene resin.”> Fmoc-
Ser(Trt)-OH was used at the last coupling cycle of the
synthesis. At the end of the chain elongation, the trityl
group masking the serine hydroxyl function was selec-
tively removed under mild acidic conditions.* On-resin
esterification of the free alcohol function by palmitic
acid chloride was then performed to yield the anchored
peptide 2.4 After Fmoc deprotection, the expected
modified peptide H-Ser(Palm)-Phe-Leu-Leu-Arg-NH,
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was released from the resin upon treatment with a
solution of TFA/H,O/triisopropylsilane (95/2.5/2.5) for
4h. Analysis of the crude mixture by LC/UV/ESI-MS?
indicated the presence of two isobaric compounds of the
expected mass, (M+H)" =872.7Th. As an illustration,
the extracted ion chromatogram corresponding to the
detection of the protonated molecule (mass 872.7 Th) is
reproduced in Figure 1a.

On the other hand, the N-Palm pentapeptide analogue
was prepared starting from resin-tethered pentapeptide
1 (Scheme 1, path b). After Fmoc deprotection and
N-acylation with palmitic acid chloride, the expected
modified peptide Palm-Ser-Phe-Leu-Leu-Arg-NH, was
released from the resin and fully deprotected upon
treatment with TFA/TIS/H,O (95/2.5/2.5) for 4 h. As for
the first experiment, two isobaric compounds were
detected by LC/UV/ESI-MS (Fig. 1b).

The presence of two isomers can be explained by the
migration of the palmitoyl substituent. O—N-Acyl shift
of B-aminoalcohols is a well-known reversible side
reaction in peptide synthesis (Scheme 2). This intramo-
lecular rearrangement leads to the transfer of the pep-
tide backbone onto the hydroxyl groups of serine
residues under acidic conditions.® In contrast, under
basic conditions such as Fmoc removal using piperidine
solution, nucleophilic attack of the free e-amino group
of O-acylated serine induces an O-N-acyl transfer.” In


mail to: aubagnac@univ-montp2.fr

mail to: aubagnac@univ-montp2.fr


1174 L. Mouls et al. | Tetrahedron Letters 45 (2004) 1173-1178

1 Fmoc-Ser(Trt)-Phe-Leu-Leu-Arg(Pbf) —O (0]

19 TFA in CH,Cl,

Y
Fmoc-Ser-Phe-Leu-Leu-Arg(Pbf) —O

Palm-Cl/ Pyridine in CH,Cl,

2 Fmoc-Ser(Palm)-Phe-Leu-Leu-Arg(be)—O

DMF/Piperidine (80/20)

A
Palm-Ser-Phe-Leu-Leu-Arg(Pbf) D
H-Ser(Palm)-Phe-Leu-Leu-Arg(Pbf)

TFA/TIS/H,0(95/2.5/2.5)

DMEF/Piperidine (80/20)
y
H-Ser(Trt)-Phe-Leu-Leu-Arg(Pbf) —O

Palm-Cl/ Pyridine in CH,Cl,
y
Palm-Ser(Trt)-Phe-Leu-Leu-Arg(be)—O

TFA/TIS/H,0(95/2.5/2.5)

Path a 50%
Path b 10%

H-Ser(Palm)-Phe-Leu-Leu-Arg-NH, . Palm-Ser-Phe-Leu-Leu-Arg-NH,

Mixture

50%
90 %

Scheme 1. Non-optimized SPPS syntheses of O- and N-Palm N-terminal serine-containing peptides.
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Figure 1. Extracted ion chromatogram (mass 872.7 Th) of the crude mixture: (a) from Scheme 1, path a; (b) from Scheme 1, path b; (c) from Scheme

4, path a, and (d) from Scheme 4, path b.
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Scheme 2. Reversible O—N-acyl shift.

this study, the acyl migrating group is not a peptide
chain and the rearrangement is probably favoured.

LC/MS/MS experiments were conducted to sequence the
modified peptides and thus validate this hypothesis.
Differences between the two isomer CAD mass spectra
were clearly seen as shown in Figure 2a and b (analysis
of the crude mixture recovered from Scheme 1, path a).
Under the same CAD conditions each isomer exhibited
a specific fragmentation pathway from the protonated
molecules at 872.7 Th:

e Joss of palmitic acid (256 Da) leading to the ion at
616 Th for the more polar compound (Rt =3.35 min),

e 1o loss of palmitic acid for the less polar compound
(Rt=3.96 min).

57 (3.349) Sm (Mn, 1x3.00); Cm (56:60-(53:55+61:69))
44537

1175

To explain this loss of palmitic acid from the protonated
molecule of O-Palm peptide, one should consider the
sites of protonation available on the peptide: either an
oxygen atom, especially due to the presence of a serine
residue, or a nitrogen atom (amine, amide and guanidine
functions). Protonation of nitrogen leads to relatively
stable protonated molecules whereas protonation of
oxygen could promote extensive dehydration.® Proton-
ation of the oxygen of the serine side chain should thus
give rise to the loss of a neutral molecule: either water
when the hydroxyl group is free or a carboxylic acid
molecule when the hydroxyl group has been acylated.
Therefore, the observed loss of palmitic acid described
in Scheme 3 indicated that the palmitoyl substituent was
located on the side chain. The position of the palmitoyl
group was further confirmed by the relative retention
times of the two detected compounds. The most polar
compound eluted at 3.35min should correspond to the
expected peptide with a free N-terminal amino group,
H-Ser(Palm)-Phe-Leu-Leu-Arg-NH,, whereas the less
polar structure at 3.96 min should refer to the N-pal-
mitoyl peptide, Palm-Ser-Phe-Leu-Leu-Arg-NH,. So,
the loss of the neutral molecule of palmitic acid only
occurred in the case of O-palmitoylation.
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Figure 2. CAD mass spectra of the O- and N-palmitoylated peptides obtained via Scheme 1, path a.
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Scheme 3. O- and N-Palmitoylated pentapeptides.

Among the detected sequence fragment ions, it should
be noted that dehydration was observed for N-acylated
molecules as expected. The loss of water was particularly
abundant in the CAD mass spectra of the protonated
molecules but was greatly dependent on the value of the
collision energy. Since the loss of palmitic acid was never
observed for N-acylated molecules whatever the CAD
tuning, the presence of the ion at 616 Th constituted the
relevant criterion to distinguish between the two iso-
mers.

These mass spectrometric criteria were used to develop a
new synthetic protocol aimed at directing the site of
acylation and thus produce solely O-acyl or N-acyl
peptides.

To generate the O-acylated peptide, basic conditions
have to be avoided while deprotecting the N-terminal
serine residue. Thus, the base-labile N-terminal Fmoc
protecting group was replaced, on resin, by the acid-
labile Boc protecting group as described in Scheme 4,
path a. Afterwards, selective trityl removal in mild acidic
solution followed by the acylation step were performed.
Simultaneous N-terminal Boc deprotection and peptide
cleavage from the resin was achieved in acidic medium,
preventing the palmitoyl migration, the free amine being
quenched as a trifluoroacetate salt. LC/MS/MS analysis
showed a single compound (99%) with a retention time
of 3.36 min corresponding to the more polar compound
(Fig. 1c). In the CAD mass spectrum of the protonated
molecule, this compound exhibited the expected loss of
palmitic acid, yielding the ion at 616 Th.

To synthesise selectively the N-Palm peptide analogue,
we decided to take advantage of the O-N-acyl shift
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rearrangement (Scheme 4, path b). Resin-bound Fmoc-
protected O-palmitoylated pentapeptide 2 was first
released from the resin by TFA treatment. The Fmoc
protecting group was then removed in solution. In this
case, only the less polar compound was observed (Fig.
1d). As basic treatment was the last step of the synthesis,
we hypothesized that the less polar compound
(Rt=3.99min) was the N-Palm pentapeptide. This
hypothesis was validated by CAD analysis.

In summary, two synthetic protocols have been devel-
oped to prepare selectively O- or N-palmitoylated pep-
tides:

e O-palmitoylation: use of N-terminal Boc protection
prior to side chain serine deprotection and esterifica-
tion (Scheme 4, path a),

e N-palmitoylation: release in solution of the N-termi-
nal Fmoc-protected peptide and deprotection of the
Fmoc group in basic medium to achieve complete
transfer of the palmitoyl group from the serine side
chain onto the N-terminal position (Scheme 4, path
b).

Finally, the influence of the nature of the acyl group as
well as the position of the serine in the peptide chain was
studied. Esterification by n-octanoic acid instead of
palmitic acid was performed. Hexapeptides bearing an
extra alanine residue in the N-terminal position were
produced and submitted to selective O- or N-acylation.
Compounds (listed in Table 1) were prepared specifically
using the methods previously described.

O-N-Acyl migration was observed in N-terminal serine-
containing peptides whatever the nature of the acyl



L. Mouls et al. | Tetrahedron Letters 45 (2004) 1173—-1178 1177

1 Fmoc-Ser(Trt)-Phe-Leu-Leu-Arg(be)—O [0}

Palm : \%
14
Path a Path b
O : Rink amide PS resin

DMF/Piperidine (80/20) 1% TFA in CH,Cl,

H-Ser(Trt)-Phe-Leu-Leu-Arg(Pbf) —O Fmoc-Ser-Phe-Leu-Leu-Arg(Pbf) —O

Boc,0, DIEA, DCM ¢ l Palm-Cl/ Pyridine in CH,Cl,

Boc-Ser(Trt)-Phe-Leu-Leu- Arg(Pbﬂ_O Fmoc-Ser(Palm)-Phe-Leu-Leu-Arg(Pbf) —O 2
TFA/TIS/DCM (1/2.5/96.5) ¢ l TFA/TIS/H,0 (95/2.5/2.5)
Boc-Ser-Phe-Leu-Leu-Arg(Pbf) _O Fmoc-Ser(Palm)-Phe-Leu-Leu-Arg-NH,
Palm-Cl/ Pyridine in CH,Cl, l

DMF/Piperidine (80/20), 1 h
Boc-Ser(Palm)-Phe-Leu-Leu-Arg(be)—O

TFA/TIS/H,0 (95/2.5/2.5) l

H-Ser(Palm)-Phe-Leu-Leu-Arg-NH, Palm-Ser-Phe-Leu-Leu-Arg-NH,

Scheme 4. Selective synthesis of O- or N-palmitoylated N-terminal serine-containing peptide.

Table 1

Compound?® (M+H)" (Th) Mass of R-COOH (Da) Fragment ion issued by the loss of RCOOH (Th)
H-Ser(Palm)-Phe-Leu-Leu-Arg-NH, 872.7 256 616.4

Palm-Ser-Phe-Leu-Leu-Arg-NH, 872.7 256 —

H-Ser(n-Oct)-Phe-Leu-Leu-Arg-NH, 760.5 144 616.4

n-Oct-Ser-Phe-Leu-Leu-Arg-NH, 760.5 144 —

H-Ala-Ser(Palm)-Phe-Leu-Leu-Arg-NH, 943.8 256 687.5

Palm-Ala-Ser-Phe-Leu-Leu-Arg-NH, 943.8 256 —

H-Ala-Ser(n-Oct)-Phe-Leu-Leu-Arg-NH, 831.6 144 687.5

n-Oct-Ala-Ser-Phe-Leu-Leu-Arg-NH, 831.6 144 —

#Palm and n-Oct represents C;sH3;—CO and C;H;5-CO, respectively.
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Figure 3. CAD mass spectrum of the protonated molecule H-Ala-Ser(Palm)-Phe-Leu-Leu-Arg-NH,.

group (n-Oct and Palm). Moreover, such isomerisation at the N-terminal position.’ In all cases, the mass spec-
was only observed when the serine residue was located trometric criteria described were verified. The loss of
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palmitic acid (256 Da) or n-octanoic acid (144 Da) was
exclusively observed when the acyl group was present on
the serine side chain (O-acylation) whatever the position
of this residue in the peptide chain. For instance, the
CAD mass spectrum of the hexapeptide, H-Ala-
Ser(Palm)-Phe-Leu-Leu-Arg-NH,, is reproduced in
Figure 3. No neutral loss was detected for any of the
N-acylated peptides.

In a single run, the LC/MS/MS analysis allowed the
detection of the presence of two isobaric compounds
and the assignment of the acylation site. Palmitoylation
or n-octanoylation of serine residues may occur during
protein post-translational modification. In proteomics
such side chain acylation can be evidenced by the loss of
the corresponding neutral carboxylic acid.
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